Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.435
Filtrar
1.
Front Immunol ; 15: 1320444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605949

RESUMO

Enhanced interferon α (IFNα) production has been implicated in the pathogenesis of systemic lupus erythematosus (SLE). We previously reported IFNα production by monocytes upon activation of the stimulator of IFN genes (STING) pathway was enhanced in patients with SLE. We investigated the mechanism of enhanced IFNα production in SLE monocytes. Monocytes enriched from the peripheral blood of SLE patients and healthy controls (HC) were stimulated with 2'3'-cyclic GAMP (2'3'-cGAMP), a ligand of STING. IFNα positive/negative cells were FACS-sorted for RNA-sequencing analysis. Gene expression in untreated and 2'3'-cGAMP-stimulated SLE and HC monocytes was quantified by real-time PCR. The effect of GATA binding protein 4 (GATA4) on IFNα production was investigated by overexpressing GATA4 in monocytic U937 cells by vector transfection. Chromatin immunoprecipitation was performed to identify GATA4 binding target genes in U937 cells stimulated with 2'3'-cGAMP. Differentially expressed gene analysis of cGAS-STING stimulated SLE and HC monocytes revealed the enrichment of gene sets related to cellular senescence in SLE. CDKN2A, a marker gene of cellular senescence, was upregulated in SLE monocytes at steady state, and its expression was further enhanced upon STING stimulation. GATA4 expression was upregulated in IFNα-positive SLE monocytes. Overexpression of GATA4 enhanced IFNα production in U937 cells. GATA4 bound to the enhancer region of IFIT family genes and promoted the expressions of IFIT1, IFIT2, and IFIT3, which promote type I IFN induction. SLE monocytes with accelerated cellular senescence produced high levels of IFNα related to GATA4 expression upon activation of the cGAS-STING pathway.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Humanos , Monócitos/metabolismo , Expressão Gênica , Interferon Tipo I/metabolismo , Interferon-alfa/metabolismo , Nucleotidiltransferases/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
2.
Sci Signal ; 17(831): eadg7867, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593156

RESUMO

Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of Ifna and Ifnb. Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo. IAV infection induced Miz1 accumulation by promoting the cullin-4B (CUL4B)-mediated ubiquitylation and degradation of the E3 ubiquitin ligase Mule (Mcl-1 ubiquitin ligase E3; also known as Huwe1 or Arf-BP1), which targets Miz1 for degradation. As a result, Miz1 accumulation limited type I IFN production and favored viral replication. This study reveals a previously unrecognized function of Miz1 in regulating antiviral defense and a potential mechanism for influenza viruses to evade host immune defense.


Assuntos
Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Camundongos , Animais , Humanos , Vírus da Influenza A/fisiologia , Ubiquitinação , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Replicação Viral , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Influenza Humana/genética , Interferons/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
3.
Curr Opin Immunol ; 86: 102413, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38608537

RESUMO

Type I and type III interferons (IFNs) are major components in activating the innate immune response. Common to both are two distinct receptor chains (IFNAR1/IFNAR2 and IFNLR1/IL10R2), which form ternary complexes upon binding their respective ligands. This results in close proximity of the intracellularly associated kinases JAK1 and TYK2, which cross phosphorylate each other, the associated receptor chains, and signal transducer and activator of transcriptions, with the latter activating IFN-stimulated genes. While there are clear similarities in the biological responses toward type I and type III IFNs, differences have been found in their tropism, tuning of activity, and induction of the immune response. Here, we focus on how these differences are embedded in the structure/function relations of these two systems in light of the recent progress that provides in-depth information on the structural assembly of these receptors and their functional implications and how these differ between the mouse and human systems.


Assuntos
Interferon Tipo I , Interferons , Humanos , Animais , Camundongos , Receptores de Interferon/metabolismo , Receptor de Interferon alfa e beta/genética , Transdução de Sinais/genética , Imunidade Inata , Interferon Tipo I/metabolismo
4.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620034

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Suínos , Farnesiltranstransferase/metabolismo , Proteínas Virais/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Transdução de Sinais
5.
Viruses ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543756

RESUMO

CD8+ T cells are critical to the adaptive immune response against viral pathogens. However, overwhelming antigen exposure can result in their exhaustion, characterised by reduced effector function, failure to clear virus, and the upregulation of inhibitory receptors, including programmed cell death 1 (PD-1). However, exhausted T cell responses can be "re-invigorated" by inhibiting PD-1 or the primary ligand of PD-1: PD-L1. Further, the absence of the type I interferon receptor IFNAR1 also results in T cell exhaustion and virus persistence in lymphocytic choriomeningitis virus Armstrong (LCMV-Arm)-infected mice. In this study, utilizing single- and double-knockout mice, we aimed to determine whether ablation of PD-1 could restore T cell functionality in the absence of IFNAR1 signalling in LCMV-Arm-infected mice. Surprisingly, this did not re-invigorate the T cell response and instead, it converted chronic LCMV-Arm infection into a lethal disease characterized by severe lung inflammation with an infiltration of neutrophils and T cells. Depletion of CD8+ T cells, but not neutrophils, rescued mice from lethal disease, demonstrating that IFNAR1 is required to prevent T cell exhaustion and virus persistence in LCMV-Arm infection, and in the absence of IFNAR1, PD-L1 is required for survival. This reveals an important interplay between IFNAR1 and PD-L1 with implications for therapeutics targeting these pathways.


Assuntos
Interferon Tipo I , Coriomeningite Linfocítica , Camundongos , Animais , Vírus da Coriomeningite Linfocítica , Linfócitos T CD8-Positivos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Camundongos Knockout , Interferon Tipo I/metabolismo , Camundongos Endogâmicos C57BL
6.
Cells ; 13(6)2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534383

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-ß and IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was evident by decreased IFN-ß, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3 phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5 and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that HDAC5 acts as a positive modulator of IFN-ß production during viral infection, while FMDV capsid protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to facilitate viral replication.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Interferon Tipo I , Animais , Proteínas do Capsídeo/metabolismo , Transdução de Sinais , Febre Aftosa/metabolismo , Imunidade Inata , Interferon Tipo I/metabolismo
7.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38490196

RESUMO

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Assuntos
Encéfalo , Interferon Tipo I , Microglia , Animais , Camundongos , Interferon Tipo I/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Peixe-Zebra , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento
8.
PLoS Pathog ; 20(3): e1012128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547254

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/ß) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1ß (nsp1ß) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1ß as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1ß gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-ß expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.


Assuntos
Coinfecção , Interferon Tipo I , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Citocinas/genética , Citocinas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Interferon Tipo I/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo
9.
Front Immunol ; 15: 1352479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426093

RESUMO

The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.


Assuntos
Interferon Tipo I , Viroses , Humanos , Inflamação , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Estresse Oxidativo , Autofagia
10.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473743

RESUMO

The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage.


Assuntos
Interferon Tipo I , Viroses , Humanos , Imunidade Inata , Transdução de Sinais/fisiologia , Cicatriz , Interferon Tipo I/metabolismo , Receptores Toll-Like , Inflamação
11.
J Med Virol ; 96(3): e29523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483060

RESUMO

Tight control of the type I interferon (IFN) signaling pathway is critical for maintaining host innate immune responses, and the ubiquitination and deubiquitination of signaling molecules are essential for signal transduction. Deubiquitinase ubiquitin-specific protein 19 (USP19) is known to be involved in deubiquitinating Beclin1, TRAF3, and TRIF for downregulation of the type I IFN signaling. Here, we show that SIAH1, a cellular E3 ubiquitin ligase that is involved in multicellular pathway, is a potent positive regulator of virus-mediated type I IFN signaling that maintains homeostasis within the antiviral immune response by targeting USP19. In the early stages of virus infection, stabilized SIAH1 directly interacts with the USP19 and simultaneously mediates K27-linked ubiquitination of 489, 490, and 610 residues of USP19 for proteasomal degradation. Additionally, we found that USP19 specifically interacts with MAVS and deubiquitinates K63-linked ubiquitinated MAVS for negative regulation of type I IFN signaling. Ultimately, we identified that SIAH1-mediated degradation of USP19 reversed USP19-mediated deubiquitination of MAVS, Beclin1, TRAF3, and TRIF, resulting in the activation of antiviral immune responses. Taken together, these findings provide new insights into the molecular mechanism of USP19 and SIAH1, and suggest a critical role of SIAH1 in antiviral immune response and homeostasis.


Assuntos
Interferon Tipo I , Ubiquitina , Humanos , Ubiquitina/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Proteína Beclina-1 , Ubiquitinação , Imunidade Inata , Interferon Tipo I/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Endopeptidases/genética , Endopeptidases/metabolismo
12.
Front Cell Infect Microbiol ; 14: 1308362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476167

RESUMO

Infectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses. Among TLRs, TLR3 recognizes viral dsRNA and triggers antiviral response cascades upon activation. Epigenetic regulation, mediated by histone deacetylase (HDAC), has been demonstrated to control several cellular functions in response to various extracellular stimuli. Employing epigenetic target modulators, such as epidrugs, is a current therapeutic option in several cancers and holds promise in treating viral diseases. This study aims to elucidate the impact of TLR3 stimulation on the plasticity of human mesothelial cells (MCs) in PD patients and to investigate the effects of HDAC1-3 inhibition. Treatment of MCs from PD patients with the TLR3 agonist polyinosinic:polycytidylic acid (Poly(I:C)), led to the acquisition of a bona fide mesothelial-to-mesenchymal transition (MMT) characterized by the upregulation of mesenchymal genes and loss of epithelial-like features. Moreover, Poly(I:C) modulated the expression of several inflammatory cytokines and chemokines. A quantitative proteomic analysis of MCs treated with MS-275, an HDAC1-3 inhibitor, unveiled altered expression of several proteins, including inflammatory cytokines/chemokines and interferon-stimulated genes (ISGs). Treatment with MS-275 facilitated MMT reversal and inhibited the interferon signature, which was associated with reduced STAT1 phosphorylation. However, the modulation of inflammatory cytokine/chemokine production was not univocal, as IL-6 and CXCL8 were augmented while TNF-α and CXCL10 were decreased. Collectively, our findings underline the significance of viral infections in acquiring a mesenchymal-like phenotype by MCs and the potential consequences of virus-associated peritonitis episodes for PD patients. The observed promotion of MMT reversal and interferon response inhibition by an HDAC1-3 inhibitor, albeit without a general impact on inflammatory cytokine production, has translational implications deserving further analysis.


Assuntos
Benzamidas , Interferon Tipo I , Peritonite , Piridinas , Viroses , Humanos , Interferon Tipo I/metabolismo , Receptor 3 Toll-Like/metabolismo , Epigênese Genética , Proteômica , Citocinas/metabolismo , Quimiocinas/metabolismo , Poli I-C/farmacologia , Receptores Toll-Like/metabolismo , Viroses/genética , Fenótipo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo
13.
Sci Rep ; 14(1): 5731, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459088

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive types of cancer. Despite decades of intense investigation, treatment options remain limited, and rapid recurrence with distant metastases remains a significant challenge. Cancer cell-intrinsic production of cytokines such as type I interferons (IFN-I) is a known potent modulator of response to therapy in many cancers, including TNBC, and can influence therapeutic outcome. Here, we report that, in TNBC systems, the aryl hydrocarbon receptor (AhR) suppresses IFN-I expression via inhibition of STImulator of Interferon Genes (STING), a key mediator of interferon production. Intratumoral STING activity is essential in mediating the efficacy of PARP inhibitors (PARPi) which are used in the treatment of cancers harboring BRCA1 deficiency. We find that, in TNBC cells, PARPi treatment activates AhR in a BRCA1 deficiency-dependent manner, thus suggesting the presence of a negative feedback loop aimed at modulating PARPi efficacy. Importantly, our results indicate that the combined inhibition of PARP and AhR is superior in elevating IFN-I expression as compared to PARPi-alone. Thus, AhR inhibition may allow for enhanced IFN-I production upon PARPi in BRCA1-deficient breast cancers, most of which are of TNBC origin, and may represent a therapeutically viable strategy to enhance PARPi efficacy.


Assuntos
Interferon Tipo I , Neoplasias de Mama Triplo Negativas , Humanos , Proteína BRCA2/genética , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
14.
Cell Mol Life Sci ; 81(1): 149, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512518

RESUMO

Type I interferons (IFN-I) play pivotal roles in tumor therapy for three decades, underscoring the critical importance of maintaining the integrity of the IFN-1 signaling pathway in radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the specific mechanism by which IFN-I contributes to these therapies, particularly in terms of activating dendritic cells (DCs), remains unclear. Based on recent studies, aberrant DNA in the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signaling pathway, which in turn produces IFN-I, which is essential for antiviral and anticancer immunity. Notably, STING can also enhance anticancer immunity by promoting autophagy, inflammation, and glycolysis in an IFN-I-independent manner. These research advancements contribute to our comprehension of the distinctions between IFN-I drugs and STING agonists in the context of oncology therapy and shed light on the challenges involved in developing STING agonist drugs. Thus, we aimed to summarize the novel mechanisms underlying cGAS-STING-IFN-I signal activation in DC-mediated antigen presentation and its role in the cancer immune cycle in this review.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Interferon Tipo I/metabolismo , Neoplasias/metabolismo , Células Dendríticas/metabolismo , Imunidade Inata
15.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527803

RESUMO

Inflammasomes are immune complexes whose activation leads to the release of pro-inflammatory cytokines IL-18 and IL-1ß. Type I IFNs play a role in fighting infection and stimulate the expression of IFN-stimulated genes (ISGs) involved in inflammation. Despite the importance of these cytokines in inflammation, the regulation of inflammasomes by type I IFNs remains poorly understood. Here, we analysed RNA-sequencing data from patients with monogenic interferonopathies and found an up-regulation of several inflammasome-related genes. To investigate the effect of type I IFN on the inflammasome, we treated human monocyte-derived macrophages with IFN-α and observed an increase in CASP1 and GSDMD mRNA levels over time, whereas IL1B and NLRP3 were not directly correlated to IFN-α exposure time. IFN-α treatment reduced the release of mature IL-1ß and IL-18, but not caspase-1, in response to ATP-mediated NLRP3 inflammasome activation, suggesting regulation occurs at cytokine expression levels and not the inflammasome itself. However, more studies are required to investigate how regulation by IFN-α occurs and impacts NLRP3 and other inflammasomes at both transcriptional and post-translational levels.


Assuntos
Interferon Tipo I , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Interferon Tipo I/metabolismo , Interleucina-18/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Caspase 1/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(12): e2312404121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478694

RESUMO

Plasmacytoid dendritic cells (pDCs) produce type I interferons (IFNs) after sensing viral/bacterial RNA or DNA by toll-like receptor (TLR) 7 or TLR9, respectively. However, aberrant pDCs activation can cause adverse effects on the host and contributes to the pathogenesis of type I IFN-related autoimmune diseases. Here, we show that heparin interacts with the human pDCs-specific blood dendritic cell antigen 2 (BDCA-2) but not with related lectins such as DCIR or dectin-2. Importantly, BDCA-2-heparin interaction depends on heparin sulfation and receptor glycosylation and results in inhibition of TLR9-driven type I IFN production in primary human pDCs and the pDC-like cell line CAL-1. This inhibition is mediated by unfractionated and low-molecular-weight heparin, as well as endogenous heparin from plasma, suggesting that the local blood environment controls the production of IFN-α in pDCs. Additionally, we identified an activation-dependent soluble form of BDCA-2 (solBDCA-2) in human plasma that functions as heparin antagonist and thereby increases TLR9-driven IFN-α production in pDCs. Of importance, solBDCA-2 levels in the serum were increased in patients with scrub typhus (an acute infectious disease caused by Orientia tsutsugamushi) compared to healthy control subjects and correlated with anti-dsDNA antibodies titers. In contrast, solBDCA-2 levels in plasma from patients with bullous pemphigoid or psoriasis were reduced. In summary, this work identifies a regulatory network consisting of heparin, membrane-bound and solBDCA-2 modulating TLR9-driven IFN-α production in pDCs. This insight into pDCs function and regulation may have implications for the treatment of pDCs-related autoimmune diseases.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Humanos , Interferon Tipo I/metabolismo , Heparina/metabolismo , Receptor Toll-Like 9/metabolismo , Células Dendríticas , Doenças Autoimunes/metabolismo
17.
Antiviral Res ; 225: 105875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552910

RESUMO

The DEAD-box (DDX) family comprises RNA helicases characterized by the conserved sequence D(Asp)-E(Glu)-A(Ala)-D(Asp), participating in various RNA metabolism processes. Some DDX family members have been identified for their crucial roles in viral infections. In this study, RNAi library screening of the DDX family unveiled the antiviral activity of DDX20. Knockdown of DDX20 enhanced the replication of viruses such as vesicular stomatitis virus (VSV) and herpes simplex virus type I (HSV-1), while overexpression of DDX20 significantly diminished the replication level of these viruses. Mechanistically, DDX20 elevated the phosphorylation level of IRF3 induced by external stimuli by facilitating the interaction between TBK1 and IRF3, thereby promoting the expression of IFN-ß. The increased IFN-ß production, in turn, upregulated the expression of interferon-stimulated genes (ISGs), including Cig5 and IFIT1, thereby exerting the antiviral effect. Finally, in an in vivo infection study, Ddx20 gene-deficient mice exhibited increased susceptibility to viral infection. This study provides new evidence that DDX20 positively modulates the interferon pathway and restricts viral infection.


Assuntos
Herpesvirus Humano 1 , Interferon Tipo I , Viroses , Animais , Camundongos , Interferons/metabolismo , Interferon beta/metabolismo , Transdução de Sinais , Diclorodifenil Dicloroetileno/metabolismo , Replicação Viral , Herpesvirus Humano 1/genética , Antivirais/metabolismo , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteína DEAD-box 20/metabolismo
18.
Front Immunol ; 15: 1338096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495892

RESUMO

Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.


Assuntos
Interferon Tipo I , Viroses , Humanos , Interferon lambda , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Interferon Tipo I/metabolismo , Epitélio/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
19.
Mol Biol Rep ; 51(1): 453, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536553

RESUMO

BACKGROUND: Type I interferons (IFNs) are an essential class of cytokines with antitumor, antiviral and immunoregulatory effects. However, over-productive the type I IFNs are tightly associated with autoimmune disorders. Thus, the induction of type I interferons is precisely regulated to maintain immune hemostasis. This study aimed to identify a novel regulator of type I interferon signaling. METHODS AND RESULTS: Primary BMDMs, isolated from mice, and human cell lines (HEK293 cells, Hela cells) and murine cell line (MEF cells) were cultured to generate in vitro models. After knockdown VRK1, real-time PCR and dual-luciferase reporter assay were performed to determine the expression level of the type I IFNs and ISGs following HTDNA and Poly (dA:dT) stimulation. Additionally, cells were treated with the VRK1 inhibitor, and the impact of VRK1 inhibition was detected. Upon HTDNA and Poly (dA:dT) stimulation, knockdown of VRK1 attenuated the induction of the type I IFNs and ISGs. Consistently, VRK-IN-1, a potent and selective VRK1 inhibitor, significantly suppressed the induction of the type I IFNs and ISGs in human and murine cell lines. Further, VRK-IN-1 inhibited induction of the type I IFNs in mouse primary BMDMs. Intriguingly, VRK1 potentiated the cGAS-STING- IFN-I axis response at STING level. CONCLUSIONS: Our study reveals a novel function of VRK1 in regulating the production of type I IFNs. VRK-IN-1 might be a potential lead compound for suppressing aberrant type I IFNs in autoimmune disorders.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , DNA/metabolismo , Células HEK293 , Células HeLa , Interferon Tipo I/metabolismo , Interferons , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
20.
Front Immunol ; 15: 1329805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481993

RESUMO

mRNA vaccine technologies introduced following the SARS-CoV-2 pandemic have highlighted the need to better understand the interaction of adjuvants and the early innate immune response. Type I interferon (IFN-I) is an integral part of this early innate response that primes several components of the adaptive immune response. Women are widely reported to respond better than men to tri- and quadrivalent influenza vaccines. Plasmacytoid dendritic cells (pDCs) are the primary cell type responsible for IFN-I production, and female pDCs produce more IFN-I than male pDCs since the upstream pattern recognition receptor Toll-like receptor 7 (TLR7) is encoded by X chromosome and is biallelically expressed by up to 30% of female immune cells. Additionally, the TLR7 promoter contains several putative androgen response elements, and androgens have been reported to suppress pDC IFN-I in vitro. Unexpectedly, therefore, we recently observed that male adolescents mount stronger antibody responses to the Pfizer BNT162b2 mRNA vaccine than female adolescents after controlling for natural SARS-CoV-2 infection. We here examined pDC behaviour in this same cohort to determine the impact of IFN-I on anti-spike and anti-receptor-binding domain IgG titres to BNT162b2. Through flow cytometry and least absolute shrinkage and selection operator (LASSO) modelling, we determined that serum-free testosterone was associated with reduced pDC IFN-I, but contrary to the well-described immunosuppressive role for androgens, the most bioactive androgen dihydrotestosterone was associated with increased IgG titres to BNT162b2. Also unexpectedly, we observed that co-vaccination with live attenuated influenza vaccine boosted the magnitude of IgG responses to BNT162b2. Together, these data support a model where systemic IFN-I increases vaccine-mediated immune responses, yet for vaccines with intracellular stages, modulation of the local IFN-I response may alter antigen longevity and consequently improve vaccine-driven immunity.


Assuntos
Vacinas contra Influenza , Interferon Tipo I , Humanos , Masculino , Feminino , Adolescente , Interferon-alfa , Vacinas contra Influenza/metabolismo , Receptor 7 Toll-Like/metabolismo , Androgênios/metabolismo , Vacina BNT162 , Vacinas de mRNA , Interferon Tipo I/metabolismo , Vacinação , Células Dendríticas , Imunoglobulina G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...